관리 메뉴

너와 나의 스토리

모두를 위한 딥러닝 - RNN 실습(2) 본문

Data Analysis/Machine learning

모두를 위한 딥러닝 - RNN 실습(2)

노는게제일좋아! 2019. 8. 7. 13:18
반응형

모두를 위한 딥러닝 ML lab12-2: RNN - Hi Hello Training 강의 정리&코드

 

전체 코드: https://github.com/hunkim/DeepLearningZeroToAll/blob/master/lab-12-1-hello-rnn.py

 

 

1. RNN model

적합한 것 골라 쓰기

 

2. Data creation

idx2char = ['h', 'i', 'e', 'l', 'o']
# Teach hello: hihell -> ihello
x_data = [[0, 1, 0, 2, 3, 3]]   # hihell
x_one_hot = [[[1, 0, 0, 0, 0],   # h 0
              [0, 1, 0, 0, 0],   # i 1
              [1, 0, 0, 0, 0],   # h 0
              [0, 0, 1, 0, 0],   # e 2
              [0, 0, 0, 1, 0],   # l 3
              [0, 0, 0, 1, 0]]]  # l 3

y_data = [[1, 0, 2, 3, 3, 4]]    # ihello

num_classes = 5
input_dim = 5  # one-hot size
hidden_size = 5  # output from the LSTM. 5 to directly predict one-hot
batch_size = 1   # one sentence
sequence_length = 6  # |ihello| == 6
learning_rate = 0.1

 

3. Feed to RNN

X = tf.placeholder(
    tf.float32, [None, sequence_length, input_dim])  # X one-hot
Y = tf.placeholder(tf.int32, [None, sequence_length])  # Y label

cell = tf.contrib.rnn.BasicLSTMCell(num_units=hidden_size, state_is_tuple=True)
initial_state = cell.zero_state(batch_size, tf.float32)
outputs, _states = tf.nn.dynamic_rnn(
    cell, X, initial_state=initial_state, dtype=tf.float32)

 

4. Cost: sequence_loss

# FC layer
X_for_fc = tf.reshape(outputs, [-1, hidden_size])
# fc_w = tf.get_variable("fc_w", [hidden_size, num_classes])
# fc_b = tf.get_variable("fc_b", [num_classes])
# outputs = tf.matmul(X_for_fc, fc_w) + fc_b
outputs = tf.contrib.layers.fully_connected(
    inputs=X_for_fc, num_outputs=num_classes, activation_fn=None)

#reshape out for sequence_loss
outputs = tf.reshape(outputs, [batch_size, sequence_length, num_classes])

weights = tf.ones([batch_size, sequence_length])
sequence_loss = tf.contrib.seq2seq.sequence_loss(
    logits=outputs, targets=Y, weights=weights)
loss = tf.reduce_mean(sequence_loss)
train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)

prediction = tf.argmax(outputs, axis=2)

 

5. session

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(50):
        l, _ = sess.run([loss, train], feed_dict={X: x_one_hot, Y: y_data})
        result = sess.run(prediction, feed_dict={X: x_one_hot})
        print(i, "loss:", l, "prediction: ", result, "true Y: ", y_data)

        # print char using dic
        result_str = [idx2char[c] for c in np.squeeze(result)]
        print("\tPrediction str: ", ''.join(result_str))

loss가 점점 줄어들면서 결국 올바른 예측을 함

 

반응형
Comments